## Low Pressure Synthesis of Trifluorophosphine Complexes of Rhodium and Iridium

By M. A. BENNETT\* and D. J. PATMORE

(Research School of Chemistry, Australian National University, Canberra A.C.T. 2600, Australia)

Summary A convenient low-pressure synthesis of trifluorophosphine complexes of rhodium and iridium is described, and their reactions and structures are discussed.

TRIFLUOROPHOSPHINE complexes of rhodium and iridium, such as  $IrI(PF_3)_4$ ,  $MH(PF_3)_4$ , and  $[M(PF_3)_4]^-$  (M = Rh or Ir), have been prepared previously by heating the metal halide and a reducing agent with PF<sub>3</sub> at pressures of up to 250 atm.1-4 The ready displacement of olefins such as ethylene, cyclo-octene, or cyclo-octa-1,5-diene from their rhodium(I) and iridium(I) complexes by tertiary phosphines and arsines provides a general method for the preparation of complexes of the type MCl(ligand)3,5-8 and we now report a convenient synthesis of  $PF_3$  complexes by a similar route.

Reaction of  $PF_3$  at  $25^{\circ}:1$  atm. with the cyclo-octene complex  $RhCl(C_8H_{14})_2^9$  gives an 80% yield of crystalline,

Compound

at  $\delta + 16.25$  p.p.m. relative to internal CFCl<sub>3</sub>. The doublet separation due to P-F coupling is 1300 Hz, which is of the order observed in other  $PF_{3}$  complexes,<sup>10</sup> and J(Rh-F)is 32 Hz. Kruck's high pressure synthesis<sup>1</sup> gives an inseparable mixture of  $Rh_2(PF_3)_8$  and  $[RhCl(PF_3)_2]_2$ , and passage of  $PF_3$  (1 atm.) over a heated mixture of  $RhCl_3$  and Cu powder gives  $[RhCl(PF_3)_2]_2$  in only 2.6% yield.

Treatment of  $IrCl(C_8H_{14})_2^{II}$  with PF<sub>3</sub> gives initially an unstable, pale yellow, low-melting crystalline solid, probably  $IrCl(C_8H_{14})(PF_3)_2$ . Attempted sublimation of this complex in vacuo causes loss of cyclo-octene and the formation of crystalline, volatile, exceedingly air-sensitive  $IrCl(PF_3)_2$ , which appears bronze by reflected light and dark blue when finely divided. The complex dissolves in n-pentane giving an orange solution, and the  $\nu(P-F)$  bands in the i.r. spectrum are similar in pattern to those of the rhodium compound (see Table).

v(P-F) (n-hexane)

Selected PF<sub>3</sub> complexes of Rh and Ir Colour M.p.b

TABLE<sup>8</sup>

| [RhCl(PF <sub>3</sub> ) <sub>2</sub> ] <sub>2</sub> | Dark Red   | 55–57°              | 944m, 926m, 917s, 906s, 875s, 860wsh. |
|-----------------------------------------------------|------------|---------------------|---------------------------------------|
| $Hg[Rh(PF_3)_4]_2$                                  | White      | 97—99°              | 907vs, 875m, 858wsh, 850s.            |
| $Ph_{3}SnRh(PF_{3})_{4}$                            | White      | 85° (decomp.)       | 930s, 905s, 877s, 845s.               |
| $[IrCl(PF_{s})_{2}]_{n}$                            | Bronze     | 76—78°              | 955m, 932s, 923m, 910vs, 877s.        |
|                                                     | (see text) |                     |                                       |
| $Hg[Ir(PF_3)_4]_2$                                  | White      | $100 - 102^{\circ}$ | 924s, 917m, 885s, 875wsh, 861s.       |
| $Ph_{3}SnIr(PF_{3})_{4}$                            | White      | 113—114°            | 942s, 917s, 886sbr, 842vs.            |

\* All compounds in the Table and Chart gave satisfactory elemental analyses.

<sup>b</sup> Sealed tube under nitrogen; uncorrected.

moderately air-stable  $[RhCl(PF_3)_2]_2$ , which is readily sublimable in vacuo and shows a parent ion peak in its mass spectrum. The <sup>19</sup>F n.m.r. spectrum consists of two piars of doublets each surrounded by complex multiplets, centred

Both complexes react with typical bridge-splitting reagents such as Tl(acac),  $TlC_5H_5$ ,  $Cl^-$ , and  $PPh_3$  to give the expected mononuclear species (see Chart). The structure of the rhodium complex in the solid state is probably

<sup>†</sup> This complex has been obtained independently by Dr. J. F. Nixon by treating the norbornadiene complex  $[RhCl(C_7H_8)]_2$  with PF<sub>3</sub> (personal communication).

## CHEMICAL COMMUNICATIONS, 1969

similar to that of [RhCl(CO)<sub>2</sub>]<sup>12</sup> i.e. containing a nonplanar halogen bridge and intermolecular Rh-Rh bonds. The iridium complex is dimeric in the vapour phase, as shown by the appearance of the parent ion at the highest m/e in the mass spectrum, and the solubility properties suggest that the dimeric structure is retained in solution; in the solid state, however, there are probably chains of metal atoms and possibly bridging chlorine atoms [cf. The high solubility and volatility of IrCl(CO)<sub>3</sub>].<sup>13</sup>.  $[IrCl(PF_3)_2]_n$  compared with  $[IrCl(CO)_3]_n$  may indicate weaker Ir-Ir bonding in the PF<sub>3</sub> complex. In this connection, it is interesting to compare the complexes M(CO)<sub>2</sub>-(acac) and  $M(PF_3)_2(acac)(M = Rh \text{ or } Ir)$ ; the carbonyl complexes show different colours by reflected and transmitted light and have metal-metal interactions in the solid state,<sup>14-17</sup> but are yellow and monomeric in solution; the PF3 complexes are yellow-orange both by reflected and transmitted light in the solid state and in solution. Intermolecular repulsions between PF<sub>3</sub> groups may be responsible for this difference, and also for the failure to isolate IrCl(PF<sub>3</sub>)<sub>3</sub>.

The complex  $[RhCl(PF_3)_2]_2$  is readily reduced by potassium amalgam in the presence of an excess of PF<sub>8</sub> to give initially the metal-metal bonded complex Hg[Rh(PF<sub>3</sub>)<sub>4</sub>]<sub>2</sub> as pentane-soluble crystals, and finally the potassium salt  $K[Rh(PF_3)_4]^{1-3}$  in about 60% yield. A similar sequence of reactions occurs when  $IrCl(C_8H_{14})(PF_3)_2$  is reduced under

- 4, 870.
- <sup>5</sup> K. Ohno and J. Tsuji, J. Amer. Chem. Soc., 1968, 90, 99.
  <sup>6</sup> J. T. Mague and G. Wilkinson, J. Chem. Soc. (A), 1966, 1736.
  <sup>7</sup> S. Montelatici, A. van der Ent, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. (A), 1968, 1054.

- <sup>6</sup> M. A. Bennett and D. L. Milner, *Chem. Comm.*, 1967, 581; *J. Amer. Chem. Soc.*, in the press.
  <sup>9</sup> L. Porri, A. Lionetti, G. Allegra, and A. Immirzi, *Chem. Comm.*, 1965, 336.
  <sup>10</sup> G. S. Reddy and R. Schmutzler, *Inorg. Chem.*, 1967, 6, 823; J. F. Nixon, *J. Chem. Soc.* (A), 1967, 1136.

- <sup>13</sup> B. L. Shaw and E. Singleton, *J. Chem. Soc.* (A), 1967, 6825; J. F. Nixoli, *J. Chem. Soc* <sup>14</sup> B. L. Shaw and E. Singleton, *J. Chem. Soc.* (A), 1967, 1683.
  <sup>12</sup> L. F. Dahl, C. Martell, and D. L. Wampler, *J. Amer. Chem. Soc.*, 1961, 83, 1762.
  <sup>13</sup> K. Krogmann, W. Binder, and H. Hausen, *Angew. Chem. Internat. Edn.*, 1968, 7, 812.
  <sup>14</sup> F. Bonati and G. Wilkinson, *J. Chem. Soc.*, 1964, 3156.
  <sup>15</sup> F. Bonati and B. Uro, *Chimica a Ludoutia*, 1964, 46, 1496.

 F. Bonati and R. Ugo, Chimica e Industria, 1964, 46, 1486.
 C. G. Pitt, L. K. Monteith, L. F. Ballard, J. P. Collman, J. C. Morrow, W. R. Roper, and D. Ulku, J. Amer. Chem. Soc., 1966, 88, 4286.

<sup>17</sup> N. A. Bailey, E. Coates, G. B. Robertson, F. Bonati, and R. Ugo, Chem. Comm., 1967, 1041.

the same conditions. Preliminary studies indicate that this simple preparation of the  $[M(PF_3)_4]^-$  anions provides a route to a range of new organometallic derivatives; thus reaction of K[Ir(PF<sub>3</sub>)<sub>4</sub>] with Ph<sub>3</sub>SnCl gives the fiveco-ordinate complex Ph<sub>3</sub>SnIr(PF<sub>3</sub>)<sub>4</sub>.

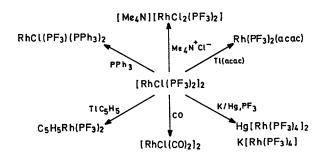



CHART. Reactions of [RhCl(PF<sub>3</sub>)<sub>2</sub>]<sub>2</sub><sup>a</sup>.

<sup>a</sup> Similar reactions occur with the iridium complex.

We thank Johnson-Matthey Co. for the loan of rhodium and iridium and the National Research Council of Canada for a Fellowship (to D.J.P.).

(Received, October 28th, 1969; Com. 1637.)